Chemical shifts in molecular solids by machine learning
Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functi...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/970a2addd1a345bea23283a88747dfe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory. |
---|