Chemical shifts in molecular solids by machine learning

Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Federico M. Paruzzo, Albert Hofstetter, Félix Musil, Sandip De, Michele Ceriotti, Lyndon Emsley
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/970a2addd1a345bea23283a88747dfe7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:970a2addd1a345bea23283a88747dfe7
record_format dspace
spelling oai:doaj.org-article:970a2addd1a345bea23283a88747dfe72021-12-02T14:40:44ZChemical shifts in molecular solids by machine learning10.1038/s41467-018-06972-x2041-1723https://doaj.org/article/970a2addd1a345bea23283a88747dfe72018-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06972-xhttps://doaj.org/toc/2041-1723Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory.Federico M. ParuzzoAlbert HofstetterFélix MusilSandip DeMichele CeriottiLyndon EmsleyNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Federico M. Paruzzo
Albert Hofstetter
Félix Musil
Sandip De
Michele Ceriotti
Lyndon Emsley
Chemical shifts in molecular solids by machine learning
description Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory.
format article
author Federico M. Paruzzo
Albert Hofstetter
Félix Musil
Sandip De
Michele Ceriotti
Lyndon Emsley
author_facet Federico M. Paruzzo
Albert Hofstetter
Félix Musil
Sandip De
Michele Ceriotti
Lyndon Emsley
author_sort Federico M. Paruzzo
title Chemical shifts in molecular solids by machine learning
title_short Chemical shifts in molecular solids by machine learning
title_full Chemical shifts in molecular solids by machine learning
title_fullStr Chemical shifts in molecular solids by machine learning
title_full_unstemmed Chemical shifts in molecular solids by machine learning
title_sort chemical shifts in molecular solids by machine learning
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/970a2addd1a345bea23283a88747dfe7
work_keys_str_mv AT federicomparuzzo chemicalshiftsinmolecularsolidsbymachinelearning
AT alberthofstetter chemicalshiftsinmolecularsolidsbymachinelearning
AT felixmusil chemicalshiftsinmolecularsolidsbymachinelearning
AT sandipde chemicalshiftsinmolecularsolidsbymachinelearning
AT micheleceriotti chemicalshiftsinmolecularsolidsbymachinelearning
AT lyndonemsley chemicalshiftsinmolecularsolidsbymachinelearning
_version_ 1718390188201213952