Chemical shifts in molecular solids by machine learning
Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functi...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/970a2addd1a345bea23283a88747dfe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:970a2addd1a345bea23283a88747dfe7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:970a2addd1a345bea23283a88747dfe72021-12-02T14:40:44ZChemical shifts in molecular solids by machine learning10.1038/s41467-018-06972-x2041-1723https://doaj.org/article/970a2addd1a345bea23283a88747dfe72018-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06972-xhttps://doaj.org/toc/2041-1723Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory.Federico M. ParuzzoAlbert HofstetterFélix MusilSandip DeMichele CeriottiLyndon EmsleyNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Federico M. Paruzzo Albert Hofstetter Félix Musil Sandip De Michele Ceriotti Lyndon Emsley Chemical shifts in molecular solids by machine learning |
description |
Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functional theory. |
format |
article |
author |
Federico M. Paruzzo Albert Hofstetter Félix Musil Sandip De Michele Ceriotti Lyndon Emsley |
author_facet |
Federico M. Paruzzo Albert Hofstetter Félix Musil Sandip De Michele Ceriotti Lyndon Emsley |
author_sort |
Federico M. Paruzzo |
title |
Chemical shifts in molecular solids by machine learning |
title_short |
Chemical shifts in molecular solids by machine learning |
title_full |
Chemical shifts in molecular solids by machine learning |
title_fullStr |
Chemical shifts in molecular solids by machine learning |
title_full_unstemmed |
Chemical shifts in molecular solids by machine learning |
title_sort |
chemical shifts in molecular solids by machine learning |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/970a2addd1a345bea23283a88747dfe7 |
work_keys_str_mv |
AT federicomparuzzo chemicalshiftsinmolecularsolidsbymachinelearning AT alberthofstetter chemicalshiftsinmolecularsolidsbymachinelearning AT felixmusil chemicalshiftsinmolecularsolidsbymachinelearning AT sandipde chemicalshiftsinmolecularsolidsbymachinelearning AT micheleceriotti chemicalshiftsinmolecularsolidsbymachinelearning AT lyndonemsley chemicalshiftsinmolecularsolidsbymachinelearning |
_version_ |
1718390188201213952 |