Chemical shifts in molecular solids by machine learning
Solid-state nuclear magnetic resonance combined with quantum chemical shift predictions is limited by high computational cost. Here, the authors use machine learning based on local atomic environments to predict experimental chemical shifts in molecular solids with accuracy similar to density functi...
Guardado en:
Autores principales: | Federico M. Paruzzo, Albert Hofstetter, Félix Musil, Sandip De, Michele Ceriotti, Lyndon Emsley |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/970a2addd1a345bea23283a88747dfe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for chemical discovery
por: Alexandre Tkatchenko
Publicado: (2020) -
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Structure determination of an amorphous drug through large-scale NMR predictions
por: Manuel Cordova, et al.
Publicado: (2021) -
Retrospective on a decade of machine learning for chemical discovery
por: O. Anatole von Lilienfeld, et al.
Publicado: (2020) -
Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats
por: Maarten R. Dobbelaere, et al.
Publicado: (2021)