GS&E journal > Mechanical analysis and characterization of IGUs with different silicone sealed spacer connections - Part 2: modelling

Insulated Glass Units (IGUs) typically consist of two glass layers, either monolithic and/or laminated sections, that mechanically interact via an hermetically-sealed air (or gas) cavity, and a series of linear spacer connections along their edges. In this paper, based on the experimental tests for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chiara Bedon, Claudio Amadio
Formato: article
Lenguaje:EN
Publicado: Challenging Glass Conference 2020
Materias:
Acceso en línea:https://doaj.org/article/970c4f1c4c1e4d92bc57510c8a85e95f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Insulated Glass Units (IGUs) typically consist of two glass layers, either monolithic and/or laminated sections, that mechanically interact via an hermetically-sealed air (or gas) cavity, and a series of linear spacer connections along their edges. In this paper, based on the experimental tests for small-scale IGU joints under pure shear and IGU prototypes in bending discussed in “Part I”, a special care is spent for the Finite Element (FE) numerical characterization and analysis of these composite systems, with a focus on the actual mechanical properties and load-bearing mechanism for the involved components. Major advantage is taken from the full 3D solid geometrical description of the connection components and the gas cavity infill. The actual role of both primary and secondary sealant layers is first assessed. Further support is derived from analytical calculations for the connection efficiency assessment, based on the adaptation of simplified formulations of literature. Finally, a calculation example is proposed to assess the magnitude of load sharing phenomena, based on FE numerical and analytical calculations for selected configurations.