Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling

Michael Busse,1 David Stevens,3 Annette Kraegeloh,2 Christian Cavelius,2 Mathias Vukelic,1 Eduard Arzt,2 Daniel J Strauss1,2 1Systems Neuroscience and Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, and Saarland University of Applied Sciences, Homburg/Saarbruecken, Germa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Busse M, Stevens D, Kraegeloh A, Cavelius C, Vukelic M, Arzt E, Strauss DJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/971253ba6722436aaf7b4d1b179a766d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:971253ba6722436aaf7b4d1b179a766d
record_format dspace
spelling oai:doaj.org-article:971253ba6722436aaf7b4d1b179a766d2021-12-02T01:07:59ZEstimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling1176-91141178-2013https://doaj.org/article/971253ba6722436aaf7b4d1b179a766d2013-09-01T00:00:00Zhttp://www.dovepress.com/estimating-the-modulatory-effects-of-nanoparticles-on-neuronal-circuit-a14421https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Michael Busse,1 David Stevens,3 Annette Kraegeloh,2 Christian Cavelius,2 Mathias Vukelic,1 Eduard Arzt,2 Daniel J Strauss1,2 1Systems Neuroscience and Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, and Saarland University of Applied Sciences, Homburg/Saarbruecken, Germany; 2Leibniz Institute for New Materials, Saarbruecken, Germany; 3Department of Physiology, Saarland University, Faculty of Medicine, Homburg/Saarbruecken, Germany Background: Beside the promising application potential of nanotechnologies in engineering, the use of nanomaterials in medicine is growing. New therapies employing innovative nanocarrier systems to increase specificity and efficacy of drug delivery schemes are already in clinical trials. However the influence of the nanoparticles themselves is still unknown in medical applications, especially for complex interactions in neural systems. The aim of this study was to investigate in vitro effects of coated silver nanoparticles (cAgNP) on the excitability of single neuronal cells and to integrate those findings into an in silico model to predict possible effects on neuronal circuits. Methods: We first performed patch clamp measurements to investigate the effects of nanosized silver particles, surrounded by an organic coating, on excitability of single cells. We then determined which parameters were altered by exposure to those nanoparticles using the Hodgkin–Huxley model of the sodium current. As a third step, we integrated those findings into a well-defined neuronal circuit of thalamocortical interactions to predict possible changes in network signaling due to the applied cAgNP, in silico. Results: We observed rapid suppression of sodium currents after exposure to cAgNP in our in vitro recordings. In numerical simulations of sodium currents we identified the parameters likely affected by cAgNP. We then examined the effects of such changes on the activity of networks. In silico network modeling indicated effects of local cAgNP application on firing patterns in all neurons in the circuit. Conclusion: Our sodium current simulation shows that suppression of sodium currents by cAgNP results primarily by a reduction in the amplitude of the current. The network simulation shows that locally cAgNP-induced changes result in changes in network activity in the entire network, indicating that local application of cAgNP may influence the activity throughout the network. Keywords: coated silver nanoparticles, modeling, patch clamp recordings, neuronal circuit model, neuromodulatory effect, nanocarriers, nonviral vectors, Llinás modelBusse MStevens DKraegeloh ACavelius CVukelic MArzt EStrauss DJDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 3559-3572 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Busse M
Stevens D
Kraegeloh A
Cavelius C
Vukelic M
Arzt E
Strauss DJ
Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
description Michael Busse,1 David Stevens,3 Annette Kraegeloh,2 Christian Cavelius,2 Mathias Vukelic,1 Eduard Arzt,2 Daniel J Strauss1,2 1Systems Neuroscience and Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, and Saarland University of Applied Sciences, Homburg/Saarbruecken, Germany; 2Leibniz Institute for New Materials, Saarbruecken, Germany; 3Department of Physiology, Saarland University, Faculty of Medicine, Homburg/Saarbruecken, Germany Background: Beside the promising application potential of nanotechnologies in engineering, the use of nanomaterials in medicine is growing. New therapies employing innovative nanocarrier systems to increase specificity and efficacy of drug delivery schemes are already in clinical trials. However the influence of the nanoparticles themselves is still unknown in medical applications, especially for complex interactions in neural systems. The aim of this study was to investigate in vitro effects of coated silver nanoparticles (cAgNP) on the excitability of single neuronal cells and to integrate those findings into an in silico model to predict possible effects on neuronal circuits. Methods: We first performed patch clamp measurements to investigate the effects of nanosized silver particles, surrounded by an organic coating, on excitability of single cells. We then determined which parameters were altered by exposure to those nanoparticles using the Hodgkin–Huxley model of the sodium current. As a third step, we integrated those findings into a well-defined neuronal circuit of thalamocortical interactions to predict possible changes in network signaling due to the applied cAgNP, in silico. Results: We observed rapid suppression of sodium currents after exposure to cAgNP in our in vitro recordings. In numerical simulations of sodium currents we identified the parameters likely affected by cAgNP. We then examined the effects of such changes on the activity of networks. In silico network modeling indicated effects of local cAgNP application on firing patterns in all neurons in the circuit. Conclusion: Our sodium current simulation shows that suppression of sodium currents by cAgNP results primarily by a reduction in the amplitude of the current. The network simulation shows that locally cAgNP-induced changes result in changes in network activity in the entire network, indicating that local application of cAgNP may influence the activity throughout the network. Keywords: coated silver nanoparticles, modeling, patch clamp recordings, neuronal circuit model, neuromodulatory effect, nanocarriers, nonviral vectors, Llinás model
format article
author Busse M
Stevens D
Kraegeloh A
Cavelius C
Vukelic M
Arzt E
Strauss DJ
author_facet Busse M
Stevens D
Kraegeloh A
Cavelius C
Vukelic M
Arzt E
Strauss DJ
author_sort Busse M
title Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
title_short Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
title_full Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
title_fullStr Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
title_full_unstemmed Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
title_sort estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/971253ba6722436aaf7b4d1b179a766d
work_keys_str_mv AT bussem estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
AT stevensd estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
AT kraegeloha estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
AT caveliusc estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
AT vukelicm estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
AT arzte estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
AT straussdj estimatingthemodulatoryeffectsofnanoparticlesonneuronalcircuitsusingcomputationalupscaling
_version_ 1718403273798451200