A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression but many quantitative aspects of miRNA biology remain to be elucidated. Based on a library of miRNA sensors, the authors quantify miRNA regulation at single cell level and develop a model to predict miRNA target inte...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9713160e9e0b4de492ec105715c1bd3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9713160e9e0b4de492ec105715c1bd3d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9713160e9e0b4de492ec105715c1bd3d2021-12-02T15:34:00ZA mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity10.1038/s41467-018-04575-02041-1723https://doaj.org/article/9713160e9e0b4de492ec105715c1bd3d2018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04575-0https://doaj.org/toc/2041-1723MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression but many quantitative aspects of miRNA biology remain to be elucidated. Based on a library of miRNA sensors, the authors quantify miRNA regulation at single cell level and develop a model to predict miRNA target interactions.Jeremy J. GamJonathan BabbRon WeissNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jeremy J. Gam Jonathan Babb Ron Weiss A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity |
description |
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression but many quantitative aspects of miRNA biology remain to be elucidated. Based on a library of miRNA sensors, the authors quantify miRNA regulation at single cell level and develop a model to predict miRNA target interactions. |
format |
article |
author |
Jeremy J. Gam Jonathan Babb Ron Weiss |
author_facet |
Jeremy J. Gam Jonathan Babb Ron Weiss |
author_sort |
Jeremy J. Gam |
title |
A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity |
title_short |
A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity |
title_full |
A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity |
title_fullStr |
A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity |
title_full_unstemmed |
A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity |
title_sort |
mixed antagonistic/synergistic mirna repression model enables accurate predictions of multi-input mirna sensor activity |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/9713160e9e0b4de492ec105715c1bd3d |
work_keys_str_mv |
AT jeremyjgam amixedantagonisticsynergisticmirnarepressionmodelenablesaccuratepredictionsofmultiinputmirnasensoractivity AT jonathanbabb amixedantagonisticsynergisticmirnarepressionmodelenablesaccuratepredictionsofmultiinputmirnasensoractivity AT ronweiss amixedantagonisticsynergisticmirnarepressionmodelenablesaccuratepredictionsofmultiinputmirnasensoractivity AT jeremyjgam mixedantagonisticsynergisticmirnarepressionmodelenablesaccuratepredictionsofmultiinputmirnasensoractivity AT jonathanbabb mixedantagonisticsynergisticmirnarepressionmodelenablesaccuratepredictionsofmultiinputmirnasensoractivity AT ronweiss mixedantagonisticsynergisticmirnarepressionmodelenablesaccuratepredictionsofmultiinputmirnasensoractivity |
_version_ |
1718386978272051200 |