Multi-atom quasiparticle scattering interference for superconductor energy-gap symmetry determination

Abstract Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α , for all momenta k on the Fermi surface of every band α. While there are a variety of tec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rahul Sharma, Andreas Kreisel, Miguel Antonio Sulangi, Jakob Böker, Andrey Kostin, Milan P. Allan, H. Eisaki, Anna E. Böhmer, Paul C. Canfield, Ilya Eremin, J. C. Séamus Davis, P. J. Hirschfeld, Peter O. Sprau
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/97145cbfdfec440a8f2c15b397204a4b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α , for all momenta k on the Fermi surface of every band α. While there are a variety of techniques for determining $$|{\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha |$$ ∣ Δ k α ∣ , no general method existed to measure the signed values of $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α . Recently, however, a technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns, centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured, is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α it generates to the $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α determined from single-atom scattering in FeSe where s± energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for $${\mathrm{{\Delta}}}_{\mathbf{k}}^\alpha$$ Δ k α of opposite sign.