A Common Pathway for Activation of Host-Targeting and Bacteria-Targeting Toxins in Human Intestinal Bacteria

ABSTRACT Human gut microbes exhibit a spectrum of cooperative and antagonistic interactions with their host and also with other microbes. The major Bacteroides host-targeting virulence factor, Bacteroides fragilis toxin (BFT), is produced as an inactive protoxin by enterotoxigenic B. fragilis strain...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yiqiao Bao, Andrew A. Verdegaal, Brent W. Anderson, Natasha A. Barry, Jing He, Xiang Gao, Andrew L. Goodman
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/9730b221a4864a5dbd80420b95bf24b1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Human gut microbes exhibit a spectrum of cooperative and antagonistic interactions with their host and also with other microbes. The major Bacteroides host-targeting virulence factor, Bacteroides fragilis toxin (BFT), is produced as an inactive protoxin by enterotoxigenic B. fragilis strains. BFT is processed by the conserved bacterial cysteine protease fragipain (Fpn), which is also encoded in B. fragilis strains that lack BFT. In this report, we identify a secreted antibacterial protein (fragipain-activated bacteriocin 1 [Fab1]) and its cognate immunity protein (resistance to fragipain-activated bacteriocin 1 [RFab1]) in enterotoxigenic and nontoxigenic strains of B. fragilis. Although BFT and Fab1 share no sequence identity, Fpn also activates the Fab1 protoxin, resulting in its secretion and antibacterial activity. These findings highlight commonalities between host- and bacterium-targeting toxins in intestinal bacteria and suggest that antibacterial antagonism may promote the conservation of pathways that activate host-targeting virulence factors. IMPORTANCE The human intestine harbors a highly complex microbial community; interpersonal variation in this community can impact pathogen susceptibility, metabolism, and other aspects of health. Here, we identified and characterized a commensal-targeting antibacterial protein encoded in the gut microbiome. Notably, a shared pathway activates this antibacterial toxin and a host-targeting toxin. These findings highlight unexpected commonalities between host- and bacterium-targeting toxins in intestinal bacteria.