Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography

Abstract The primary purpose was to examine the relationship between the muscle architectural characteristics of short and long-distance cyclist—including muscle thickness, fascicle angle, and fascicle length—of the anterior thigh and posterior leg and its impact in 20-s cycling power. The secondary...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hyung-Jin Lee, Kang-Woo Lee, Kurokawa Takeshi, Yong-Woo Lee, Hee-Jin Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9749e1b2ed994503b262f400ad6afe31
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The primary purpose was to examine the relationship between the muscle architectural characteristics of short and long-distance cyclist—including muscle thickness, fascicle angle, and fascicle length—of the anterior thigh and posterior leg and its impact in 20-s cycling power. The secondary purpose was to clarify the muscle variables that predict the cycling power by using ultrasonography to measure the muscle architectural characteristics. Twenty-four varsity cyclists participated in this study, of whom 12 were short-distance cyclists and 12 were long-distance cyclists. B-mode ultrasonography was used to measure muscle architecture parameters. A cycle ergometer was used to measure the cycling power. The rectus femoris, vastus medialis, and medial head of gastrocnemius were significantly thicker in short-distance cyclists than in long-distance cyclists at every site (p < 0.05). Our analysis revealed that the rectus femoris fascicle length at the 30% level of the thigh was a significant independent predictor of the 20-s cycling power in short-distance cyclists, while the rectus femoris fascicle angle at the 50% level was that of the 20-s cycling power in long-distance cyclists. These findings highlight the significance of rectus femoris muscle architecture to cycling power.