Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography
Abstract The primary purpose was to examine the relationship between the muscle architectural characteristics of short and long-distance cyclist—including muscle thickness, fascicle angle, and fascicle length—of the anterior thigh and posterior leg and its impact in 20-s cycling power. The secondary...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9749e1b2ed994503b262f400ad6afe31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The primary purpose was to examine the relationship between the muscle architectural characteristics of short and long-distance cyclist—including muscle thickness, fascicle angle, and fascicle length—of the anterior thigh and posterior leg and its impact in 20-s cycling power. The secondary purpose was to clarify the muscle variables that predict the cycling power by using ultrasonography to measure the muscle architectural characteristics. Twenty-four varsity cyclists participated in this study, of whom 12 were short-distance cyclists and 12 were long-distance cyclists. B-mode ultrasonography was used to measure muscle architecture parameters. A cycle ergometer was used to measure the cycling power. The rectus femoris, vastus medialis, and medial head of gastrocnemius were significantly thicker in short-distance cyclists than in long-distance cyclists at every site (p < 0.05). Our analysis revealed that the rectus femoris fascicle length at the 30% level of the thigh was a significant independent predictor of the 20-s cycling power in short-distance cyclists, while the rectus femoris fascicle angle at the 50% level was that of the 20-s cycling power in long-distance cyclists. These findings highlight the significance of rectus femoris muscle architecture to cycling power. |
---|