Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
Sparse unmixing is an important technique for hyperspectral data analysis. Most sparse unmixing algorithms underutilize the spatial and spectral information of the hyperspectral image, which is unfavourable for the accuracy of endmember identification and abundance estimation. We propose a new spect...
Enregistré dans:
Auteur principal: | Fan Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi-Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9769a5f40dfe4481b37ecb06ca823295 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On the spectral nature of entanglement
par: Mario Mastriani
Publié: (2021) -
Knowledge‐aided block sparse Bayesian learning STAP for phased‐array MIMO airborne radar
par: Ning Cui, et autres
Publié: (2021) -
Research on the Identification and Application of Immovable Cultural Relics in the Historic City of Macau Based on Condition of Intelligent Remote Sensing Technology
par: Qiang Zhao
Publié: (2021) -
Research on the Ranked Searchable Encryption Scheme Based on an Access Tree in IoTs
par: Yan-Yan Yang, et autres
Publié: (2021) -
Exploiting Serialized Fine-Grained Action Recognition Using WiFi Sensing
par: Weiyuan Tong, et autres
Publié: (2021)