Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice
Mei Xue,1,2,* Liang Zhang,3,* Ming-xing Yang,1 Wei Zhang,1 Xiu-min Li,1,2 Zhi-min Ou,1 Zhi-peng Li,1,2 Su-huan Liu,1 Xue-jun Li,1 Shu-yu Yang1 1Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, 2Department of Pharmacology, Beijing University of Chinese Medicine,...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/976b3b6b884c444f89c9e72fe875bf08 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Mei Xue,1,2,* Liang Zhang,3,* Ming-xing Yang,1 Wei Zhang,1 Xiu-min Li,1,2 Zhi-min Ou,1 Zhi-peng Li,1,2 Su-huan Liu,1 Xue-jun Li,1 Shu-yu Yang1 1Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, 2Department of Pharmacology, Beijing University of Chinese Medicine, Chao Yang District, Beijing, 3Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Berberine (BBR) shows very low plasma levels after oral administration due to its poor absorption by the gastrointestinal tract. We have previously demonstrated that BBR showed increased gastrointestinal absorption and enhanced antidiabetic effects in db/db mice after being entrapped into solid lipid nanoparticles (SLNs). However, whether BBR-loaded SLNs (BBR-SLNs) also have beneficial effects on hepatosteatosis is not clear. We investigated the effects of BBR-SLNs on lipid metabolism in the liver using histological staining and reverse transcription polymerase chain reaction analysis. The results showed that oral administration of BBR-SLNs inhibited the increase of body weight and decreased liver weight in parallel with the reduction of serum alanine transaminase and liver triglyceride levels in db/db mice. The maximum drug concentration in the liver was 20-fold higher than that in the blood. BBR-SLNs reduced fat accumulation and lipid droplet sizes significantly in the liver, as indicated by hematoxylin and eosin and Oil Red O staining. The expression of lipogenic genes, including fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding protein 1c (SREBP1c) were downregulated, while lipolytic gene carnitine palmitoyltransferase-1 (CPT1) was upregulated in BBR-SLN-treated livers. In summary, we have uncovered an unexpected effect of BBR-SLNs on hepatosteatosis treatment through the inhibition of lipogenesis and the induction of lipolysis in the liver of db/db mice. Keywords: berberine, solid lipid nanoparticles, fatty liver, hepatosteatosis |
---|