Lead-Free Perovskite Single Crystals: A Brief Review
Lead-free perovskites have received remarkable attention because of their nontoxicity, low-cost fabrication, and spectacular properties including controlled bandgap, long diffusion length of charge carrier, large absorption coefficient, and high photoluminescence quantum yield. Compared with the wid...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/977ac116a0494191874627265f8165b4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Lead-free perovskites have received remarkable attention because of their nontoxicity, low-cost fabrication, and spectacular properties including controlled bandgap, long diffusion length of charge carrier, large absorption coefficient, and high photoluminescence quantum yield. Compared with the widely investigated polycrystals, single crystals have advantages of lower trap densities, longer diffusion length of carrier, and extended absorption spectrum due to the lack of grain boundaries, which facilitates their potential in different fields including photodetectors, solar cells, X-ray detectors, light-emitting diodes, and so on. Therefore, numerous research focusing on the novel properties, preparation methods, and remarkable progress in applications of lead-free perovskite single crystals (LFPSCs) has been extensively studied. In this review, the current advancements of LFPSCs are briefly summarized, including the synthesis approaches, compositional and interfacial engineering, and stability of several representative systems of LFPSCs as well as the reported practical applications. Finally, the critical challenges which limit the performance of LFPSCs, and their inspiring prospects for further developments are also discussed. |
---|