CT-Based Local Distribution Metric Improves Characterization of COPD
Abstract Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large va...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9785d98cf36c4301add005d9784b2033 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9785d98cf36c4301add005d9784b2033 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9785d98cf36c4301add005d9784b20332021-12-02T15:06:14ZCT-Based Local Distribution Metric Improves Characterization of COPD10.1038/s41598-017-02871-12045-2322https://doaj.org/article/9785d98cf36c4301add005d9784b20332017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02871-1https://doaj.org/toc/2045-2322Abstract Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRMfSAD has been observed. We postulate that representing the 3D PRMfSAD data as a single scalar quantity (relative volume of PRMfSAD) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRMfSAD classification maps. We found that the surface area of fSAD (SfSAD) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique SfSAD patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients.Benjamin A. HoffEsther PompeStefanie GalbánDirkje S. PostmaJan-Willem J. LammersNick H. T. ten HackenLeo KoendermanTimothy D. JohnsonStijn E. VerledenPim A. de JongFirdaus A. A. Mohamed HoeseinMaarten van den BergeBrian D. RossCraig J. GalbánNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Benjamin A. Hoff Esther Pompe Stefanie Galbán Dirkje S. Postma Jan-Willem J. Lammers Nick H. T. ten Hacken Leo Koenderman Timothy D. Johnson Stijn E. Verleden Pim A. de Jong Firdaus A. A. Mohamed Hoesein Maarten van den Berge Brian D. Ross Craig J. Galbán CT-Based Local Distribution Metric Improves Characterization of COPD |
description |
Abstract Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRMfSAD has been observed. We postulate that representing the 3D PRMfSAD data as a single scalar quantity (relative volume of PRMfSAD) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRMfSAD classification maps. We found that the surface area of fSAD (SfSAD) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique SfSAD patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients. |
format |
article |
author |
Benjamin A. Hoff Esther Pompe Stefanie Galbán Dirkje S. Postma Jan-Willem J. Lammers Nick H. T. ten Hacken Leo Koenderman Timothy D. Johnson Stijn E. Verleden Pim A. de Jong Firdaus A. A. Mohamed Hoesein Maarten van den Berge Brian D. Ross Craig J. Galbán |
author_facet |
Benjamin A. Hoff Esther Pompe Stefanie Galbán Dirkje S. Postma Jan-Willem J. Lammers Nick H. T. ten Hacken Leo Koenderman Timothy D. Johnson Stijn E. Verleden Pim A. de Jong Firdaus A. A. Mohamed Hoesein Maarten van den Berge Brian D. Ross Craig J. Galbán |
author_sort |
Benjamin A. Hoff |
title |
CT-Based Local Distribution Metric Improves Characterization of COPD |
title_short |
CT-Based Local Distribution Metric Improves Characterization of COPD |
title_full |
CT-Based Local Distribution Metric Improves Characterization of COPD |
title_fullStr |
CT-Based Local Distribution Metric Improves Characterization of COPD |
title_full_unstemmed |
CT-Based Local Distribution Metric Improves Characterization of COPD |
title_sort |
ct-based local distribution metric improves characterization of copd |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/9785d98cf36c4301add005d9784b2033 |
work_keys_str_mv |
AT benjaminahoff ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT estherpompe ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT stefaniegalban ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT dirkjespostma ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT janwillemjlammers ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT nickhttenhacken ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT leokoenderman ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT timothydjohnson ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT stijneverleden ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT pimadejong ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT firdausaamohamedhoesein ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT maartenvandenberge ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT briandross ctbasedlocaldistributionmetricimprovescharacterizationofcopd AT craigjgalban ctbasedlocaldistributionmetricimprovescharacterizationofcopd |
_version_ |
1718388530055479296 |