Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales

Understanding the plastic deformation mechanism within specific ranges of temperature and strain in metal alloys is of great technological importance. Here the authors report on dynamic simulations of dislocation–solute coevolution in tungsten crystals containing a few atomic parts per million of in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yue Zhao, Lucile Dezerald, Marta Pozuelo, Xinran Zhou, Jaime Marian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/978bf90adbd542fd82dbdfd6ee142638
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:978bf90adbd542fd82dbdfd6ee142638
record_format dspace
spelling oai:doaj.org-article:978bf90adbd542fd82dbdfd6ee1426382021-12-02T14:42:14ZSimulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales10.1038/s41467-020-15085-32041-1723https://doaj.org/article/978bf90adbd542fd82dbdfd6ee1426382020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15085-3https://doaj.org/toc/2041-1723Understanding the plastic deformation mechanism within specific ranges of temperature and strain in metal alloys is of great technological importance. Here the authors report on dynamic simulations of dislocation–solute coevolution in tungsten crystals containing a few atomic parts per million of interstitial oxygen and their relation to unstable plastic flow.Yue ZhaoLucile DezeraldMarta PozueloXinran ZhouJaime MarianNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yue Zhao
Lucile Dezerald
Marta Pozuelo
Xinran Zhou
Jaime Marian
Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
description Understanding the plastic deformation mechanism within specific ranges of temperature and strain in metal alloys is of great technological importance. Here the authors report on dynamic simulations of dislocation–solute coevolution in tungsten crystals containing a few atomic parts per million of interstitial oxygen and their relation to unstable plastic flow.
format article
author Yue Zhao
Lucile Dezerald
Marta Pozuelo
Xinran Zhou
Jaime Marian
author_facet Yue Zhao
Lucile Dezerald
Marta Pozuelo
Xinran Zhou
Jaime Marian
author_sort Yue Zhao
title Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
title_short Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
title_full Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
title_fullStr Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
title_full_unstemmed Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
title_sort simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/978bf90adbd542fd82dbdfd6ee142638
work_keys_str_mv AT yuezhao simulatingthemechanismsofserratedflowininterstitialalloyswithatomicresolutionoverdiffusivetimescales
AT luciledezerald simulatingthemechanismsofserratedflowininterstitialalloyswithatomicresolutionoverdiffusivetimescales
AT martapozuelo simulatingthemechanismsofserratedflowininterstitialalloyswithatomicresolutionoverdiffusivetimescales
AT xinranzhou simulatingthemechanismsofserratedflowininterstitialalloyswithatomicresolutionoverdiffusivetimescales
AT jaimemarian simulatingthemechanismsofserratedflowininterstitialalloyswithatomicresolutionoverdiffusivetimescales
_version_ 1718389766450315264