Deep learning for discovering pathological continuum of crypts and evaluating therapeutic effects: An implication for in vivo preclinical study.
Applying deep learning to the field of preclinical in vivo studies is a new and exciting prospect with the potential to unlock decades worth of underutilized data. As a proof of concept, we performed a feasibility study on a colitis model treated with Sulfasalazine, a drug used in therapeutic care o...
Guardado en:
Autores principales: | Dechao Shan, Jie Zheng, Alexander Klimowicz, Mark Panzenbeck, Zheng Liu, Di Feng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9792d8cf3d574844bf4b1922ca50e9e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In Vivo Studies Should Take Priority When Defining Mechanisms of Intestinal Crypt Morphogenesis
por: Jordi Guiu, PhD, et al.
Publicado: (2022) -
Rebuttal to: In Vivo Studies Should Take Priority When Defining Mechanisms of Intestinal Crypt Morphogenesis
por: Shinya Sugimoto, MD, PhD, et al.
Publicado: (2022) -
Neuroimaging Biomarkers Predicting the Efficacy of Multimodal Rehabilitative Intervention in the Alzheimer’s Dementia Continuum Pathology
por: Sonia Di Tella, et al.
Publicado: (2021) -
First Report of Deep Crypt Secretory Cells in Ascending Colon in Chinchilla (Chinchilla lanigera): A Histological and Histochemical Study
por: Ghiurco,Florin, et al.
Publicado: (2021) -
A Crypt-Specific Core Microbiota Resides in the Mouse Colon
por: Thierry Pédron, et al.
Publicado: (2012)