Dysregulated Arginine Metabolism in Young Patients with Chronic Persistent Asthma and in Human Bronchial Epithelial Cells

Background: Recent metabolomics studies have found circulatory metabolism alterations in patients with asthma, indicating that altered metabolites played a significant role in asthma. However, the regulatory mechanisms in asthma, especially in young chronic persistent asthma remain underexplored. Me...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bo Zhou, Gulinigaer Tuerhong Jiang, Hui Liu, Manyun Guo, Junhui Liu, Jianqing She
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/979eb8c185aa4c52bddc4821570b6867
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background: Recent metabolomics studies have found circulatory metabolism alterations in patients with asthma, indicating that altered metabolites played a significant role in asthma. However, the regulatory mechanisms in asthma, especially in young chronic persistent asthma remain underexplored. Methods: In this study, a prospective cohort of 162 patients diagnosed of asthma admitted to the First Affiliated Hospital of Xi’an Jiaotong University from January 2018 to December 2019 was used to perform a nested case-control study. Among them, we included 30 patients with chronic persistent asthma between 20 to 35 years old; 30 health control with evenly distributed age and sex were then recruited. Nontargeted metabolomics was applied to identify serum metabolic profiles and altered metabolic pathways. Results: In vitro, human bronchial epithelial cells (HBECs) line BEAS-2B with the addition of L-citrulline and/or asymmetric dimethylarginine (ADMA) model was utilized and the concentrations of nitric oxide (NO) metabolites were tested to evaluate the therapeutic potential of L-citrulline. The young patients with chronic persistent asthma displayed dysregulated serum metabolic profiles, especially enriched in arginine metabolism. The ratio of L-citrulline to ornithine is associated with blood eosinophil count. In vitro, adding L-citrulline could reverse ADMA-mediated reduction of NOx at lower L-arginine concentration (25 μM), but was ineffective in the higher L-arginine concentration (100 μM) media. Conclusions: The arginine metabolism balance is of vital importance during the pathogenesis and progression of chronic asthma. L-citrulline could be a powerful approach to restore airway NO production, potentially exhibiting therapeutic benefits among young patients with chronic asthma.