CT Radiomics and Machine-Learning Models for Predicting Tumor-Stroma Ratio in Patients With Pancreatic Ductal Adenocarcinoma
PurposeTo develop and validate a machine learning classifier based on multidetector computed tomography (MDCT), for the preoperative prediction of tumor–stroma ratio (TSR) expression in patients with pancreatic ductal adenocarcinoma (PDAC).Materials and MethodsIn this retrospective study, 227 patien...
Guardado en:
Autores principales: | Yinghao Meng, Hao Zhang, Qi Li, Fang Liu, Xu Fang, Jing Li, Jieyu Yu, Xiaochen Feng, Mengmeng Zhu, Na Li, Guodong Jing, Li Wang, Chao Ma, Jianping Lu, Yun Bian, Chengwei Shao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97a9274c27c04a598c8643a72ca74334 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impact of Tumor–Stroma Ratio on the Prognosis of Colorectal Cancer: A Systematic Review
por: Jinlai Gao, et al.
Publicado: (2021) -
Tumor Budding Score Is a Strong and Independent Prognostic Factor in Patients With Pancreatic Ductal Adenocarcinoma: An Evaluation of Whole Slide Pathology Images of Large Sections
por: Hui Jiang, et al.
Publicado: (2021) -
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm
por: Jiahao Gao, et al.
Publicado: (2021) -
Stromal scoring in advanced colon and rectal cancer: Stroma-rich tumors and their association with aggressive phenotypes
por: Souza Da Silva Ricella M., et al.
Publicado: (2022) -
Low Tumor-to-Stroma Ratio Reflects Protective Role of Stroma against Prostate Cancer Progression
por: Paulina Nastały, et al.
Publicado: (2021)