Sleep classification from wrist-worn accelerometer data using random forests
Abstract Accurate and low-cost sleep measurement tools are needed in both clinical and epidemiological research. To this end, wearable accelerometers are widely used as they are both low in price and provide reasonably accurate estimates of movement. Techniques to classify sleep from the high-resolu...
Guardado en:
Autores principales: | Kalaivani Sundararajan, Sonja Georgievska, Bart H. W. te Lindert, Philip R. Gehrman, Jennifer Ramautar, Diego R. Mazzotti, Séverine Sabia, Michael N. Weedon, Eus J. W. van Someren, Lars Ridder, Jian Wang, Vincent T. van Hees |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97baecca4ff44f33ac66c0224412daae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research
por: Benjamin W. Nelson, et al.
Publicado: (2020) -
Development of digital measures for nighttime scratch and sleep using wrist-worn wearable devices
por: Nikhil Mahadevan, et al.
Publicado: (2021) -
Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device
por: Nikhil Mahadevan, et al.
Publicado: (2020) -
The association between accelerometer-assessed physical activity and respiratory function in older adults differs between smokers and non-smokers
por: Mohamed Amine Benadjaoud, et al.
Publicado: (2019) -
Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning
por: Mona Nasseri, et al.
Publicado: (2021)