Sleep classification from wrist-worn accelerometer data using random forests

Abstract Accurate and low-cost sleep measurement tools are needed in both clinical and epidemiological research. To this end, wearable accelerometers are widely used as they are both low in price and provide reasonably accurate estimates of movement. Techniques to classify sleep from the high-resolu...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Kalaivani Sundararajan, Sonja Georgievska, Bart H. W. te Lindert, Philip R. Gehrman, Jennifer Ramautar, Diego R. Mazzotti, Séverine Sabia, Michael N. Weedon, Eus J. W. van Someren, Lars Ridder, Jian Wang, Vincent T. van Hees
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/97baecca4ff44f33ac66c0224412daae
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!