Estimation of Azimuth and Elevation for Multiple Acoustic Sources Using Tetrahedral Microphone Arrays and Convolutional Neural Networks

A method for multiple acoustic source localization using a tetrahedral microphone array and a convolutional neural network (CNN) is presented. Our method presents a novel approach for the estimation of acoustic source direction of arrival (DoA), both azimuth and elevation, utilizing a non-coplanar m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saulius Sakavičius, Artūras Serackis
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/97be8e8cbd2348618994e6fa20d96ef4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A method for multiple acoustic source localization using a tetrahedral microphone array and a convolutional neural network (CNN) is presented. Our method presents a novel approach for the estimation of acoustic source direction of arrival (DoA), both azimuth and elevation, utilizing a non-coplanar microphone array. In our approach, we use the phase component of the short-time Fourier transform (STFT) of the microphone array’s signals as the input feature for the CNN and a DoA probability density map as the training target. Our findings imply that our method outperforms the currently available methods for multiple sound source DoA estimation in both accuracy and speed.