Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
Electroencephalography (EEG) is a non-invasive technique used to record the brain’s evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, g...
Guardado en:
Autores principales: | Maham Saeidi, Waldemar Karwowski, Farzad V. Farahani, Krzysztof Fiok, Redha Taiar, P. A. Hancock, Awad Al-Juaid |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97d37623d3624809a837fab71e23c18d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EEG-Based Classification of the Driver Alertness State
por: Golz Martin, et al.
Publicado: (2020) -
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Afshin Shoeibi, et al.
Publicado: (2021) -
Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors
por: Karun Thanjavur, et al.
Publicado: (2021) -
TSMG: A Deep Learning Framework for Recognizing Human Learning Style Using EEG Signals
por: Bingxue Zhang, et al.
Publicado: (2021) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
por: Jing Cai, et al.
Publicado: (2021)