Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data
Abstract Nationwide population-based cohort provides a new opportunity to build an automated risk prediction model based on individuals’ history of health and healthcare beyond existing risk prediction models. We tested the possibility of machine learning models to predict future incidence of Alzhei...
Guardado en:
Autores principales: | Ji Hwan Park, Han Eol Cho, Jong Hun Kim, Melanie M. Wall, Yaakov Stern, Hyunsun Lim, Shinjae Yoo, Hyoung Seop Kim, Jiook Cha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97d73b0105684ab094538dfc73a2f603 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scoping review: the empowerment of Alzheimer’s Disease caregivers with mHealth applications
por: Eunhee Kim, et al.
Publicado: (2021) -
Influence of MRI on Diagnostic Efficacy and Satisfaction of Patients with Alzheimer’s Disease
por: Zheng Dong, et al.
Publicado: (2021) -
Estimating the incidence of cocaine use and mortality with music lyrics about cocaine
por: Yulin Hswen, et al.
Publicado: (2021) -
VEGF Family Gene Expression as Prognostic Biomarkers for Alzheimer’s Disease and Primary Liver Cancer
por: Kai Xu, et al.
Publicado: (2021) -
Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
por: Mathieu Ravaut, et al.
Publicado: (2021)