Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use con...
Enregistré dans:
Auteurs principaux: | Zahra Torkashvand, Hossein Mahjub, Ali Reza Soltanian, Maryam Farhadian |
---|---|
Format: | article |
Langue: | EN FA |
Publié: |
Bushehr University of Medical Sciences
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/97dc132614874af190a02b892c7f7d96 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Ordinal Logistic Regression Analysis of Factors Affecting the Length of Student Study
par: Baiq Rika Ayu Febrilia, et autres
Publié: (2019) -
Predicción del rendimiento en una asignatura empleando la regresión logística ordinal
par: Heredia R,Jobany J, et autres
Publié: (2014) -
CONDITIONS OF ECONOMIC ACTIVITY CO-ORDINATION AS A FACTOR OF SHAPING ORGANIZATIONAL STRUCTURES
par: Viktor E. Dementiev
Publié: (2017) -
A Bayesian Multilevel Ordinal Regression Model for Fish Maturity Data: Difference in Maturity Ogives of Skipjack Tuna (Katsuwonus pelamis) Between Schools in the Western and Central Pacific Ocean
par: Jie Cao, et autres
Publié: (2021) -
Managing the Smiley Face Scale Used by Booking.com in an Ordinal Way
par: González del Pozo,Raquel, et autres
Publié: (2021)