Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use con...
Guardado en:
Autores principales: | Zahra Torkashvand, Hossein Mahjub, Ali Reza Soltanian, Maryam Farhadian |
---|---|
Formato: | article |
Lenguaje: | EN FA |
Publicado: |
Bushehr University of Medical Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97dc132614874af190a02b892c7f7d96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ordinal Logistic Regression Analysis of Factors Affecting the Length of Student Study
por: Baiq Rika Ayu Febrilia, et al.
Publicado: (2019) -
Predicción del rendimiento en una asignatura empleando la regresión logística ordinal
por: Heredia R,Jobany J, et al.
Publicado: (2014) -
CONDITIONS OF ECONOMIC ACTIVITY CO-ORDINATION AS A FACTOR OF SHAPING ORGANIZATIONAL STRUCTURES
por: Viktor E. Dementiev
Publicado: (2017) -
A Bayesian Multilevel Ordinal Regression Model for Fish Maturity Data: Difference in Maturity Ogives of Skipjack Tuna (Katsuwonus pelamis) Between Schools in the Western and Central Pacific Ocean
por: Jie Cao, et al.
Publicado: (2021) -
Managing the Smiley Face Scale Used by Booking.com in an Ordinal Way
por: González del Pozo,Raquel, et al.
Publicado: (2021)