Deep convolutional neural networks for accurate somatic mutation detection

Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios.

Guardado en:
Detalles Bibliográficos
Autores principales: Sayed Mohammad Ebrahim Sahraeian, Ruolin Liu, Bayo Lau, Karl Podesta, Marghoob Mohiyuddin, Hugo Y. K. Lam
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/97e2f4d53235488391827e07f5a633f0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:97e2f4d53235488391827e07f5a633f0
record_format dspace
spelling oai:doaj.org-article:97e2f4d53235488391827e07f5a633f02021-12-02T16:58:25ZDeep convolutional neural networks for accurate somatic mutation detection10.1038/s41467-019-09027-x2041-1723https://doaj.org/article/97e2f4d53235488391827e07f5a633f02019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09027-xhttps://doaj.org/toc/2041-1723Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios.Sayed Mohammad Ebrahim SahraeianRuolin LiuBayo LauKarl PodestaMarghoob MohiyuddinHugo Y. K. LamNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sayed Mohammad Ebrahim Sahraeian
Ruolin Liu
Bayo Lau
Karl Podesta
Marghoob Mohiyuddin
Hugo Y. K. Lam
Deep convolutional neural networks for accurate somatic mutation detection
description Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios.
format article
author Sayed Mohammad Ebrahim Sahraeian
Ruolin Liu
Bayo Lau
Karl Podesta
Marghoob Mohiyuddin
Hugo Y. K. Lam
author_facet Sayed Mohammad Ebrahim Sahraeian
Ruolin Liu
Bayo Lau
Karl Podesta
Marghoob Mohiyuddin
Hugo Y. K. Lam
author_sort Sayed Mohammad Ebrahim Sahraeian
title Deep convolutional neural networks for accurate somatic mutation detection
title_short Deep convolutional neural networks for accurate somatic mutation detection
title_full Deep convolutional neural networks for accurate somatic mutation detection
title_fullStr Deep convolutional neural networks for accurate somatic mutation detection
title_full_unstemmed Deep convolutional neural networks for accurate somatic mutation detection
title_sort deep convolutional neural networks for accurate somatic mutation detection
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/97e2f4d53235488391827e07f5a633f0
work_keys_str_mv AT sayedmohammadebrahimsahraeian deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection
AT ruolinliu deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection
AT bayolau deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection
AT karlpodesta deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection
AT marghoobmohiyuddin deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection
AT hugoyklam deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection
_version_ 1718382344843296768