Deep convolutional neural networks for accurate somatic mutation detection
Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97e2f4d53235488391827e07f5a633f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:97e2f4d53235488391827e07f5a633f0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:97e2f4d53235488391827e07f5a633f02021-12-02T16:58:25ZDeep convolutional neural networks for accurate somatic mutation detection10.1038/s41467-019-09027-x2041-1723https://doaj.org/article/97e2f4d53235488391827e07f5a633f02019-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09027-xhttps://doaj.org/toc/2041-1723Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios.Sayed Mohammad Ebrahim SahraeianRuolin LiuBayo LauKarl PodestaMarghoob MohiyuddinHugo Y. K. LamNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sayed Mohammad Ebrahim Sahraeian Ruolin Liu Bayo Lau Karl Podesta Marghoob Mohiyuddin Hugo Y. K. Lam Deep convolutional neural networks for accurate somatic mutation detection |
description |
Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios. |
format |
article |
author |
Sayed Mohammad Ebrahim Sahraeian Ruolin Liu Bayo Lau Karl Podesta Marghoob Mohiyuddin Hugo Y. K. Lam |
author_facet |
Sayed Mohammad Ebrahim Sahraeian Ruolin Liu Bayo Lau Karl Podesta Marghoob Mohiyuddin Hugo Y. K. Lam |
author_sort |
Sayed Mohammad Ebrahim Sahraeian |
title |
Deep convolutional neural networks for accurate somatic mutation detection |
title_short |
Deep convolutional neural networks for accurate somatic mutation detection |
title_full |
Deep convolutional neural networks for accurate somatic mutation detection |
title_fullStr |
Deep convolutional neural networks for accurate somatic mutation detection |
title_full_unstemmed |
Deep convolutional neural networks for accurate somatic mutation detection |
title_sort |
deep convolutional neural networks for accurate somatic mutation detection |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/97e2f4d53235488391827e07f5a633f0 |
work_keys_str_mv |
AT sayedmohammadebrahimsahraeian deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection AT ruolinliu deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection AT bayolau deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection AT karlpodesta deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection AT marghoobmohiyuddin deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection AT hugoyklam deepconvolutionalneuralnetworksforaccuratesomaticmutationdetection |
_version_ |
1718382344843296768 |