Deep convolutional neural networks for accurate somatic mutation detection
Somatic mutations are crucial to the understanding of cancer genesis, progression, and treatment, but are still challenging to detect. Here the authors present NeuSomatic, a convolutional neural network approach for accurate somatic mutation detection across various sequencing scenarios.
Guardado en:
Autores principales: | Sayed Mohammad Ebrahim Sahraeian, Ruolin Liu, Bayo Lau, Karl Podesta, Marghoob Mohiyuddin, Hugo Y. K. Lam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97e2f4d53235488391827e07f5a633f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal
por: Hongyang Li, et al.
Publicado: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
por: Bekhzod Olimov, et al.
Publicado: (2021) -
Deep Graph Convolutional Networks for Accurate Automatic Road Network Selection
por: Jing Zheng, et al.
Publicado: (2021) -
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
por: Even H. Rustad, et al.
Publicado: (2021) -
Deep neural networks for accurate predictions of crystal stability
por: Weike Ye, et al.
Publicado: (2018)