Exploring Fatigue Effects on Performance Variation of Intensive Brain–Computer Interface Practice
Motor imagery (MI) is an endogenous mental process and is commonly used as an electroencephalogram (EEG)-based brain–computer interface (BCI) strategy. Previous studies of P300 and MI-based (without online feedback) BCI have shown that mental states like fatigue can negatively affect participants’ E...
Guardado en:
Autores principales: | Songwei Li, Junyi Duan, Yu Sun, Xinjun Sheng, Xiangyang Zhu, Jianjun Meng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/97effa511327410a9a8563f618d5542a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel strategy for driving car brain–computer interfaces: Discrimination of EEG-based visual-motor imagery
por: Zhou Zhouzhou, et al.
Publicado: (2021) -
Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts
por: Hirotaka Sugino, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Jing-Shan Huang, et al.
Publicado: (2021) -
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia
por: Shugeng Chen, et al.
Publicado: (2021) -
Emergency Braking Intention Detect System Based on K-Order Propagation Number Algorithm: A Network Perspective
por: Yuhong Zhang, et al.
Publicado: (2021)