Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
Abstract Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To dat...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/980697b8918e4f6fac400772d53da387 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:980697b8918e4f6fac400772d53da387 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:980697b8918e4f6fac400772d53da3872021-12-02T14:35:47ZRadiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI10.1038/s41598-021-89218-z2045-2322https://doaj.org/article/980697b8918e4f6fac400772d53da3872021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89218-zhttps://doaj.org/toc/2045-2322Abstract Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903–1.000) for local recurrence; 0.864 (0.726–0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or “radiomic risk score”, increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival.Ka Young ShimSung Won ChungJae Hak JeongInpyeong HwangChul-Kee ParkTae Min KimSung-Hye ParkJae Kyung WonJoo Ho LeeSoon-Tae LeeRoh-Eul YooKoung Mi KangTae Jin YunJi-Hoon KimChul-Ho SohnKyu Sung ChoiSeung Hong ChoiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ka Young Shim Sung Won Chung Jae Hak Jeong Inpyeong Hwang Chul-Kee Park Tae Min Kim Sung-Hye Park Jae Kyung Won Joo Ho Lee Soon-Tae Lee Roh-Eul Yoo Koung Mi Kang Tae Jin Yun Ji-Hoon Kim Chul-Ho Sohn Kyu Sung Choi Seung Hong Choi Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI |
description |
Abstract Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903–1.000) for local recurrence; 0.864 (0.726–0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or “radiomic risk score”, increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival. |
format |
article |
author |
Ka Young Shim Sung Won Chung Jae Hak Jeong Inpyeong Hwang Chul-Kee Park Tae Min Kim Sung-Hye Park Jae Kyung Won Joo Ho Lee Soon-Tae Lee Roh-Eul Yoo Koung Mi Kang Tae Jin Yun Ji-Hoon Kim Chul-Ho Sohn Kyu Sung Choi Seung Hong Choi |
author_facet |
Ka Young Shim Sung Won Chung Jae Hak Jeong Inpyeong Hwang Chul-Kee Park Tae Min Kim Sung-Hye Park Jae Kyung Won Joo Ho Lee Soon-Tae Lee Roh-Eul Yoo Koung Mi Kang Tae Jin Yun Ji-Hoon Kim Chul-Ho Sohn Kyu Sung Choi Seung Hong Choi |
author_sort |
Ka Young Shim |
title |
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI |
title_short |
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI |
title_full |
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI |
title_fullStr |
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI |
title_full_unstemmed |
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI |
title_sort |
radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced mri |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/980697b8918e4f6fac400772d53da387 |
work_keys_str_mv |
AT kayoungshim radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT sungwonchung radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT jaehakjeong radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT inpyeonghwang radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT chulkeepark radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT taeminkim radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT sunghyepark radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT jaekyungwon radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT jooholee radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT soontaelee radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT roheulyoo radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT koungmikang radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT taejinyun radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT jihoonkim radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT chulhosohn radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT kyusungchoi radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri AT seunghongchoi radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri |
_version_ |
1718391087024832512 |