Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI

Abstract Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To dat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ka Young Shim, Sung Won Chung, Jae Hak Jeong, Inpyeong Hwang, Chul-Kee Park, Tae Min Kim, Sung-Hye Park, Jae Kyung Won, Joo Ho Lee, Soon-Tae Lee, Roh-Eul Yoo, Koung Mi Kang, Tae Jin Yun, Ji-Hoon Kim, Chul-Ho Sohn, Kyu Sung Choi, Seung Hong Choi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/980697b8918e4f6fac400772d53da387
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:980697b8918e4f6fac400772d53da387
record_format dspace
spelling oai:doaj.org-article:980697b8918e4f6fac400772d53da3872021-12-02T14:35:47ZRadiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI10.1038/s41598-021-89218-z2045-2322https://doaj.org/article/980697b8918e4f6fac400772d53da3872021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89218-zhttps://doaj.org/toc/2045-2322Abstract Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903–1.000) for local recurrence; 0.864 (0.726–0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or “radiomic risk score”, increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival.Ka Young ShimSung Won ChungJae Hak JeongInpyeong HwangChul-Kee ParkTae Min KimSung-Hye ParkJae Kyung WonJoo Ho LeeSoon-Tae LeeRoh-Eul YooKoung Mi KangTae Jin YunJi-Hoon KimChul-Ho SohnKyu Sung ChoiSeung Hong ChoiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ka Young Shim
Sung Won Chung
Jae Hak Jeong
Inpyeong Hwang
Chul-Kee Park
Tae Min Kim
Sung-Hye Park
Jae Kyung Won
Joo Ho Lee
Soon-Tae Lee
Roh-Eul Yoo
Koung Mi Kang
Tae Jin Yun
Ji-Hoon Kim
Chul-Ho Sohn
Kyu Sung Choi
Seung Hong Choi
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
description Abstract Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903–1.000) for local recurrence; 0.864 (0.726–0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or “radiomic risk score”, increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival.
format article
author Ka Young Shim
Sung Won Chung
Jae Hak Jeong
Inpyeong Hwang
Chul-Kee Park
Tae Min Kim
Sung-Hye Park
Jae Kyung Won
Joo Ho Lee
Soon-Tae Lee
Roh-Eul Yoo
Koung Mi Kang
Tae Jin Yun
Ji-Hoon Kim
Chul-Ho Sohn
Kyu Sung Choi
Seung Hong Choi
author_facet Ka Young Shim
Sung Won Chung
Jae Hak Jeong
Inpyeong Hwang
Chul-Kee Park
Tae Min Kim
Sung-Hye Park
Jae Kyung Won
Joo Ho Lee
Soon-Tae Lee
Roh-Eul Yoo
Koung Mi Kang
Tae Jin Yun
Ji-Hoon Kim
Chul-Ho Sohn
Kyu Sung Choi
Seung Hong Choi
author_sort Ka Young Shim
title Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
title_short Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
title_full Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
title_fullStr Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
title_full_unstemmed Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI
title_sort radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced mri
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/980697b8918e4f6fac400772d53da387
work_keys_str_mv AT kayoungshim radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT sungwonchung radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT jaehakjeong radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT inpyeonghwang radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT chulkeepark radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT taeminkim radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT sunghyepark radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT jaekyungwon radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT jooholee radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT soontaelee radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT roheulyoo radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT koungmikang radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT taejinyun radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT jihoonkim radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT chulhosohn radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT kyusungchoi radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
AT seunghongchoi radiomicsbasedneuralnetworkpredictsrecurrencepatternsinglioblastomausingdynamicsusceptibilitycontrastenhancedmri
_version_ 1718391087024832512