Oligodendrocytes, BK channels and the preservation of myelin [version 2; peer review: 2 approved]

Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant ne...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Maddalena Rupnik, David Baker, David L. Selwood
Format: article
Langue:EN
Publié: F1000 Research Ltd 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/9810d00c370c4920b32bff4a8c35f151
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant neuronal metabolic impairment, so myelin preservation is necessary to safeguard neural networks. Multiple sclerosis (MS) is the most prevalent demyelinating disease of the CNS. In MS, inflammatory attacks against myelin, proposed to be autoimmune, cause myelin decay and oligodendrocyte loss, leaving neurons vulnerable. Current therapies target the prominent neuroinflammation but are mostly ineffective in protecting from neurodegeneration and the progressive neurological disability. People with MS have substantially higher levels of extracellular glutamate, the main excitatory neurotransmitter. This impairs cellular homeostasis to cause excitotoxic stress. Large conductance Ca2+-activated K+ channels (BK channels) could preserve myelin or allow its recovery by protecting cells from the resulting excessive excitability. This review evaluates the role of excitotoxic stress, myelination and BK channels in MS pathology, and explores the hypothesis that BK channel activation could be a therapeutic strategy to protect oligodendrocytes from excitotoxic stress in MS. This could reduce progression of neurological disability if used in parallel to immunomodulatory therapies.