Unsupervised clustering and epigenetic classification of single cells

Single cell ATAC-seq (scATAC-seq) data reveals cellular level epigenetic heterogeneity but its application in delineating distinct subpopulations is still challenging. Here, the authors develop scABC, a statistical method for unsupervised clustering of scATAC-seq data and identification of open chro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahdi Zamanighomi, Zhixiang Lin, Timothy Daley, Xi Chen, Zhana Duren, Alicia Schep, William J. Greenleaf, Wing Hung Wong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/981f5451f9b94168a52a12c4a38b1aab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single cell ATAC-seq (scATAC-seq) data reveals cellular level epigenetic heterogeneity but its application in delineating distinct subpopulations is still challenging. Here, the authors develop scABC, a statistical method for unsupervised clustering of scATAC-seq data and identification of open chromatin regions specific to cell identity.