Unsupervised clustering and epigenetic classification of single cells

Single cell ATAC-seq (scATAC-seq) data reveals cellular level epigenetic heterogeneity but its application in delineating distinct subpopulations is still challenging. Here, the authors develop scABC, a statistical method for unsupervised clustering of scATAC-seq data and identification of open chro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahdi Zamanighomi, Zhixiang Lin, Timothy Daley, Xi Chen, Zhana Duren, Alicia Schep, William J. Greenleaf, Wing Hung Wong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/981f5451f9b94168a52a12c4a38b1aab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:981f5451f9b94168a52a12c4a38b1aab
record_format dspace
spelling oai:doaj.org-article:981f5451f9b94168a52a12c4a38b1aab2021-12-02T17:32:33ZUnsupervised clustering and epigenetic classification of single cells10.1038/s41467-018-04629-32041-1723https://doaj.org/article/981f5451f9b94168a52a12c4a38b1aab2018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04629-3https://doaj.org/toc/2041-1723Single cell ATAC-seq (scATAC-seq) data reveals cellular level epigenetic heterogeneity but its application in delineating distinct subpopulations is still challenging. Here, the authors develop scABC, a statistical method for unsupervised clustering of scATAC-seq data and identification of open chromatin regions specific to cell identity.Mahdi ZamanighomiZhixiang LinTimothy DaleyXi ChenZhana DurenAlicia SchepWilliam J. GreenleafWing Hung WongNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mahdi Zamanighomi
Zhixiang Lin
Timothy Daley
Xi Chen
Zhana Duren
Alicia Schep
William J. Greenleaf
Wing Hung Wong
Unsupervised clustering and epigenetic classification of single cells
description Single cell ATAC-seq (scATAC-seq) data reveals cellular level epigenetic heterogeneity but its application in delineating distinct subpopulations is still challenging. Here, the authors develop scABC, a statistical method for unsupervised clustering of scATAC-seq data and identification of open chromatin regions specific to cell identity.
format article
author Mahdi Zamanighomi
Zhixiang Lin
Timothy Daley
Xi Chen
Zhana Duren
Alicia Schep
William J. Greenleaf
Wing Hung Wong
author_facet Mahdi Zamanighomi
Zhixiang Lin
Timothy Daley
Xi Chen
Zhana Duren
Alicia Schep
William J. Greenleaf
Wing Hung Wong
author_sort Mahdi Zamanighomi
title Unsupervised clustering and epigenetic classification of single cells
title_short Unsupervised clustering and epigenetic classification of single cells
title_full Unsupervised clustering and epigenetic classification of single cells
title_fullStr Unsupervised clustering and epigenetic classification of single cells
title_full_unstemmed Unsupervised clustering and epigenetic classification of single cells
title_sort unsupervised clustering and epigenetic classification of single cells
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/981f5451f9b94168a52a12c4a38b1aab
work_keys_str_mv AT mahdizamanighomi unsupervisedclusteringandepigeneticclassificationofsinglecells
AT zhixianglin unsupervisedclusteringandepigeneticclassificationofsinglecells
AT timothydaley unsupervisedclusteringandepigeneticclassificationofsinglecells
AT xichen unsupervisedclusteringandepigeneticclassificationofsinglecells
AT zhanaduren unsupervisedclusteringandepigeneticclassificationofsinglecells
AT aliciaschep unsupervisedclusteringandepigeneticclassificationofsinglecells
AT williamjgreenleaf unsupervisedclusteringandepigeneticclassificationofsinglecells
AT winghungwong unsupervisedclusteringandepigeneticclassificationofsinglecells
_version_ 1718380263366459392