Unsupervised clustering and epigenetic classification of single cells
Single cell ATAC-seq (scATAC-seq) data reveals cellular level epigenetic heterogeneity but its application in delineating distinct subpopulations is still challenging. Here, the authors develop scABC, a statistical method for unsupervised clustering of scATAC-seq data and identification of open chro...
Guardado en:
Autores principales: | Mahdi Zamanighomi, Zhixiang Lin, Timothy Daley, Xi Chen, Zhana Duren, Alicia Schep, William J. Greenleaf, Wing Hung Wong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/981f5451f9b94168a52a12c4a38b1aab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data
por: Wanwen Zeng, et al.
Publicado: (2019) -
Modeling regulatory network topology improves genome-wide analyses of complex human traits
por: Xiang Zhu, et al.
Publicado: (2021) -
Unsupervised vector-based classification of single-molecule charge transport data
por: Mario Lemmer, et al.
Publicado: (2016) -
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
por: Tasha Nagamine, et al.
Publicado: (2020) -
Benchmark and application of unsupervised classification approaches for univariate data
por: Maria El Abbassi, et al.
Publicado: (2021)