A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean
Abstract Geophysical models make predictions relying on parameter values to be estimated from data. However, existing methods are costly because they require either many runs of the complex geophysical model or to implement an adjoint model. Here, we propose an alternative approach based on optimal...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/981f6a12dd764bdba8b4073d62929f0c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:981f6a12dd764bdba8b4073d62929f0c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:981f6a12dd764bdba8b4073d62929f0c2021-11-12T07:13:23ZA Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean1942-246610.1029/2020MS002245https://doaj.org/article/981f6a12dd764bdba8b4073d62929f0c2021-08-01T00:00:00Zhttps://doi.org/10.1029/2020MS002245https://doaj.org/toc/1942-2466Abstract Geophysical models make predictions relying on parameter values to be estimated from data. However, existing methods are costly because they require either many runs of the complex geophysical model or to implement an adjoint model. Here, we propose an alternative approach based on optimal control theory which is the simultaneous perturbations stochastic approximation (SPSA). This gradient‐descent method is generic and easy to implement, and its computational cost does not increase with the number of parameters to optimize. This study aims at highlighting the potential of SPSA for parameter identification in geophysical models. Through the example of vertical turbulent mixing in the upper ocean, we show with twin experiments that the method could successfully identify parameter values that minimize model‐data discrepancy. The efficient and easy‐to‐get results provided by SPSA in this study should pave the way for a broader use of parameter identification in the complex and embedded models commonly used in geophysical sciences.Clement AldebertGuillaume KoenigMelika BakloutiPhilippe FrauniéJean‐Luc DevenonAmerican Geophysical Union (AGU)articleparameter identificationoptimizationturbulencehydrodynamicsinverse methodPhysical geographyGB3-5030OceanographyGC1-1581ENJournal of Advances in Modeling Earth Systems, Vol 13, Iss 8, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
parameter identification optimization turbulence hydrodynamics inverse method Physical geography GB3-5030 Oceanography GC1-1581 |
spellingShingle |
parameter identification optimization turbulence hydrodynamics inverse method Physical geography GB3-5030 Oceanography GC1-1581 Clement Aldebert Guillaume Koenig Melika Baklouti Philippe Fraunié Jean‐Luc Devenon A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean |
description |
Abstract Geophysical models make predictions relying on parameter values to be estimated from data. However, existing methods are costly because they require either many runs of the complex geophysical model or to implement an adjoint model. Here, we propose an alternative approach based on optimal control theory which is the simultaneous perturbations stochastic approximation (SPSA). This gradient‐descent method is generic and easy to implement, and its computational cost does not increase with the number of parameters to optimize. This study aims at highlighting the potential of SPSA for parameter identification in geophysical models. Through the example of vertical turbulent mixing in the upper ocean, we show with twin experiments that the method could successfully identify parameter values that minimize model‐data discrepancy. The efficient and easy‐to‐get results provided by SPSA in this study should pave the way for a broader use of parameter identification in the complex and embedded models commonly used in geophysical sciences. |
format |
article |
author |
Clement Aldebert Guillaume Koenig Melika Baklouti Philippe Fraunié Jean‐Luc Devenon |
author_facet |
Clement Aldebert Guillaume Koenig Melika Baklouti Philippe Fraunié Jean‐Luc Devenon |
author_sort |
Clement Aldebert |
title |
A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean |
title_short |
A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean |
title_full |
A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean |
title_fullStr |
A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean |
title_full_unstemmed |
A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean |
title_sort |
fast and generic method to identify parameters in complex and embedded geophysical models: the example of turbulent mixing in the ocean |
publisher |
American Geophysical Union (AGU) |
publishDate |
2021 |
url |
https://doaj.org/article/981f6a12dd764bdba8b4073d62929f0c |
work_keys_str_mv |
AT clementaldebert afastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT guillaumekoenig afastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT melikabaklouti afastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT philippefraunie afastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT jeanlucdevenon afastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT clementaldebert fastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT guillaumekoenig fastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT melikabaklouti fastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT philippefraunie fastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean AT jeanlucdevenon fastandgenericmethodtoidentifyparametersincomplexandembeddedgeophysicalmodelstheexampleofturbulentmixingintheocean |
_version_ |
1718431123066847232 |