Feature fusion for inverse synthetic aperture radar image classification via learning shared hidden space
Abstract Multi‐sensor fusion recognition is a meaningful task in ISAR image recognition. Compared with a single sensor, multi‐sensor fusion can provide richer target information, which is conducive to more accurate and robust identification. However, previous deep learning‐based fusion methods do no...
Guardado en:
Autores principales: | Wenhao Lin, Xunzhang Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/982ad391af2947dc9064a06a82077124 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
por: Meng Jia, et al.
Publicado: (2021) -
Low Profile Dual-Band Shared Aperture Array for Vehicle-to-Vehicle Communication
por: Sandhiya Reddy Govindarajulu, et al.
Publicado: (2021) -
Application of clustering algorithm in complex landscape farmland synthetic aperture radar image segmentation
por: Chen Zhuoran, et al.
Publicado: (2021) -
Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images
por: Gang Zhang, et al.
Publicado: (2021) -
Fusion of semantic and appearance features for loop‐closure detection in a dynamic environment
por: Yan Xu, et al.
Publicado: (2021)