A machine learning framework for guided wave-based damage detection of rail head using surface-bonded piezo-electric wafer transducers
Due to repeated heavy loads, environmental conditions and non-frequent monitoring, the rail is subjected to heavy damage resulting in sudden failure. Hence, a frequent, faster, and efficient monitoring strategy is required. This paper attempts to investigate the application of guided wave (GW) gener...
Enregistré dans:
Auteurs principaux: | Harsh Mahajan, Sauvik Banerjee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/98535892364b4c4f8a97ed49e1f521f5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mechanical Wear Contact between the Wheel and Rail on a Turnout with Variable Stiffness
par: Jerzy Kisilowski, et autres
Publié: (2021) -
Virginia and Yellow Rail autumn migration ecology: synthesis using multiple data sets
par: Fournier Auriel M. V., et autres
Publié: (2017) -
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
par: Dianchun Bai, et autres
Publié: (2021) -
Measurement method for longitudinal displacement of wheel/rail contact point using strain gauges put on wheels
par: Takatoshi HONDO, et autres
Publié: (2020) -
Stress Analysis of Guide Rails of Elevators
par: Wisam H. Ali, et autres
Publié: (2009)