EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering.
Recommender systems aim to provide users with a selection of items, based on predicting their preferences for items they have not yet rated, thus helping them filter out irrelevant ones from a large product catalogue. Collaborative filtering is a widely used mechanism to predict a particular user...
Guardado en:
Autores principales: | Yu Du, Nicolas Sutton-Charani, Sylvie Ranwez, Vincent Ranwez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/985ad0f24a3d465396eafbf40ebf78e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Saving of bagasse by improved boilder house operations
por: Ranwez, G.
Publicado: (2014) -
MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons.
por: Vincent Ranwez, et al.
Publicado: (2011) -
Contexts in a paper recommendation system with collaborative filtering
por: Pinata Winoto, et al.
Publicado: (2012) -
Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning
por: Chi-Ken Lu, et al.
Publicado: (2021) -
Avatime noun classes and concord
por: Russell G. Schuh
Publicado: (1995)