A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan’s Lanyang Plain
Groundwater resources are abundant and widely used in Taiwan’s Lanyang Plain. However, in some places the groundwater arsenic (As) concentrations far exceed the World Health Organization’s standards for drinking water quality. Measurements of the As concentrations in groundwater show considerable sp...
Enregistré dans:
Auteurs principaux: | Ching-Ping Liang, Chi-Chien Sun, Heejun Suk, Sheng-Wei Wang, Jui-Sheng Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/98601a5e8f014185b6cd68037ec0bbe0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Groundwater suitability analysis for drinking using GIS based fuzzy logic
par: Santanu Mallik, et autres
Publié: (2021) -
Influence of phosphorus on the arsenic uptake by tomato (Solanum lycopersicum L) irrigated with arsenic solutions at four different concentrations
par: Pigna,M, et autres
Publié: (2012) -
Probability of Non-Exceedance of Arsenic Concentration in Groundwater Estimated Using Stochastic Multicomponent Reactive Transport Modeling
par: Nico Dalla Libera, et autres
Publié: (2021) -
Potential health risk assessment related to arsenic pollution and hydrogeochemistry of groundwaters in Akşehir and surroundings (Konya/Turkey)
par: Simge Varol
Publié: (2021) -
Risk assessment of heavy metal and trace elements contamination in groundwater in some parts of Ogun state
par: O. O. Adewoyin, et autres
Publié: (2019)