Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism.
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate t...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9860aee1054444d0928bc5248cce29f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9860aee1054444d0928bc5248cce29f7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9860aee1054444d0928bc5248cce29f72021-11-18T05:37:34ZSpire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism.1544-91731545-788510.1371/journal.pbio.1001795https://doaj.org/article/9860aee1054444d0928bc5248cce29f72014-02-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24586110/?tool=EBIhttps://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a "ping-pong" mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase-independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle.Pierre MontavilleAntoine JégouJulien PernierChristel CompperBérengère GuichardBinyam MogessieMelina SchuhGuillaume Romet-LemonneMarie-France CarlierPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 12, Iss 2, p e1001795 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Pierre Montaville Antoine Jégou Julien Pernier Christel Compper Bérengère Guichard Binyam Mogessie Melina Schuh Guillaume Romet-Lemonne Marie-France Carlier Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
description |
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a "ping-pong" mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase-independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle. |
format |
article |
author |
Pierre Montaville Antoine Jégou Julien Pernier Christel Compper Bérengère Guichard Binyam Mogessie Melina Schuh Guillaume Romet-Lemonne Marie-France Carlier |
author_facet |
Pierre Montaville Antoine Jégou Julien Pernier Christel Compper Bérengère Guichard Binyam Mogessie Melina Schuh Guillaume Romet-Lemonne Marie-France Carlier |
author_sort |
Pierre Montaville |
title |
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
title_short |
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
title_full |
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
title_fullStr |
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
title_full_unstemmed |
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
title_sort |
spire and formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/9860aee1054444d0928bc5248cce29f7 |
work_keys_str_mv |
AT pierremontaville spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT antoinejegou spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT julienpernier spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT christelcompper spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT berengereguichard spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT binyammogessie spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT melinaschuh spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT guillaumerometlemonne spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism AT mariefrancecarlier spireandformin2synergizeandantagonizeinregulatingactinassemblyinmeiosisbyapingpongmechanism |
_version_ |
1718424866817835008 |