Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
Inspired by the neuroscience research results that the human brain can produce dynamic responses to different emotions, a new electroencephalogram (EEG)-based human emotion classification model was proposed, named R2G-ST-BiLSTM, which uses a hierarchical neural network model to learn more discrimina...
Guardado en:
Autores principales: | Pengwei Zhang, Chongdan Min, Kangjia Zhang, Wen Xue, Jingxia Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/987fc71566b745dba95a44b8c054b909 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated Individual Cattle Identification Using Video Data: A Unified Deep Learning Architecture Approach
por: Yongliang Qiao, et al.
Publicado: (2021) -
A hierarchical power system transient stability assessment method considering sample imbalance
por: Yixing Du, et al.
Publicado: (2021) -
Massage Therapy’s Effectiveness on the Decoding EEG Rhythms of Left/Right Motor Imagery and Motion Execution in Patients With Skeletal Muscle Pain
por: Huihui Li, et al.
Publicado: (2021) -
Air Pollutant Concentration Prediction Based on a CEEMDAN-FE-BiLSTM Model
por: Xuchu Jiang, et al.
Publicado: (2021) -
BiLSTM-Attention: An Air Target Tactical Intention Recognition Model
por: Teng Fei, Liu Shu, Song Yafei
Publicado: (2021)