Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations
Density contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the ef...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/98801385e80f41d5a0a6d5b1a5570fe3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:98801385e80f41d5a0a6d5b1a5570fe3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:98801385e80f41d5a0a6d5b1a5570fe32021-11-25T17:30:52ZIntrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations10.3390/e231115441099-4300https://doaj.org/article/98801385e80f41d5a0a6d5b1a5570fe32021-11-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1544https://doaj.org/toc/1099-4300Density contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the effect of cosmological expansion on a quantum field amounts to squeezing. Thus, the entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems. Entropy of a free quantum field is a seemingly simple yet subtle issue. In this paper, different from previous treatments, we tackle this issue with a fully developed nonequilibrium quantum field theory formalism for such systems. We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements and the Wigner functions, and, from them, derive the von Neumann entropy. We then show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced upon coarse-graining out the correlation between the particle pairs. We also construct the bridge between our quantum field-theoretic results and those using the probability distribution of classical stochastic fields by earlier authors, preserving some important quantum properties, such as entanglement and coherence, of the quantum field.Jen-Tsung HsiangBei-Lok HuMDPI AGarticlecosmological particle creationentropy generationnonequilibrium field theorycosmological perturbationsScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1544, p 1544 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cosmological particle creation entropy generation nonequilibrium field theory cosmological perturbations Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
cosmological particle creation entropy generation nonequilibrium field theory cosmological perturbations Science Q Astrophysics QB460-466 Physics QC1-999 Jen-Tsung Hsiang Bei-Lok Hu Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations |
description |
Density contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the effect of cosmological expansion on a quantum field amounts to squeezing. Thus, the entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems. Entropy of a free quantum field is a seemingly simple yet subtle issue. In this paper, different from previous treatments, we tackle this issue with a fully developed nonequilibrium quantum field theory formalism for such systems. We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements and the Wigner functions, and, from them, derive the von Neumann entropy. We then show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced upon coarse-graining out the correlation between the particle pairs. We also construct the bridge between our quantum field-theoretic results and those using the probability distribution of classical stochastic fields by earlier authors, preserving some important quantum properties, such as entanglement and coherence, of the quantum field. |
format |
article |
author |
Jen-Tsung Hsiang Bei-Lok Hu |
author_facet |
Jen-Tsung Hsiang Bei-Lok Hu |
author_sort |
Jen-Tsung Hsiang |
title |
Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations |
title_short |
Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations |
title_full |
Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations |
title_fullStr |
Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations |
title_full_unstemmed |
Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum Dynamics of Cosmological Perturbations |
title_sort |
intrinsic entropy of squeezed quantum fields and nonequilibrium quantum dynamics of cosmological perturbations |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/98801385e80f41d5a0a6d5b1a5570fe3 |
work_keys_str_mv |
AT jentsunghsiang intrinsicentropyofsqueezedquantumfieldsandnonequilibriumquantumdynamicsofcosmologicalperturbations AT beilokhu intrinsicentropyofsqueezedquantumfieldsandnonequilibriumquantumdynamicsofcosmologicalperturbations |
_version_ |
1718412239826845696 |