The diagnostic value of contrast-enhanced 2D mammography in everyday clinical use
Abstract Contrast-enhanced mammography (CEM) has shown to be superior to full-field digital mammography (FFDM), but current results are dominated by studies performed on systems by one vendor. Information on diagnostic accuracy of other CEM systems is limited. Therefore, we aimed to evaluate the dia...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/988346129bf94e808aec56ee448d8be9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Contrast-enhanced mammography (CEM) has shown to be superior to full-field digital mammography (FFDM), but current results are dominated by studies performed on systems by one vendor. Information on diagnostic accuracy of other CEM systems is limited. Therefore, we aimed to evaluate the diagnostic performance of CEM on an alternative vendor’s system. We included all patients who underwent CEM in one hospital in 2019, except those with missing data or in whom CEM was used as response monitoring tool. Three experienced breast radiologists scored the low-energy images using the BI-RADS classification. Next, the complete CEM exams were scored similarly. Histopathological results or a minimum of one year follow-up were used as reference standard. Diagnostic performance and AUC were calculated and compared between low-energy images and the complete CEM examination, for all readers independently as well as combined. Breast cancer was diagnosed in 23.0% of the patients (35/152). Compared to low-energy images, overall CEM sensitivity increased from 74.3 to 87.6% (p < 0.0001), specificity from 87.8 to 94.6% (p = 0.0146). AUC increased from 0.872 to 0.957 (p = 0.0001). Performing CEM on the system tested, showed that, similar to earlier studies mainly performed on another vendor’s systems, both sensitivity and specificity improved when compared to FFDM. |
---|