A strong convergence theorem for generalized-Φ-strongly monotone maps, with applications
Abstract Let X be a uniformly convex and uniformly smooth real Banach space with dual space X∗ $X^{*}$. In this paper, a Mann-type iterative algorithm that approximates the zero of a generalized-Φ-strongly monotone map is constructed. A strong convergence theorem for a sequence generated by the algo...
Guardado en:
Autores principales: | C. E. Chidume, M. O. Nnakwe, A. Adamu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9883bb84ed6a4efba6f8d7ad52d0c74d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Strong convergence of an inertial algorithm for maximal monotone inclusions with applications
por: C. E. Chidume, et al.
Publicado: (2020) -
An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
por: Plubtieng Somyot, et al.
Publicado: (2009) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
por: Altun Ishak, et al.
Publicado: (2011) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
por: Ishak Altun, et al.
Publicado: (2011) -
Strong Convergence Theorems by Shrinking Projection Methods for Class <inline-formula> <graphic file="1687-1812-2011-681214-i1.gif"/></inline-formula> Mappings
por: Su Fang, et al.
Publicado: (2011)