The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>

ABSTRACT Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Raju Shivarathri, Sabrina Jenull, Anton Stoiber, Manju Chauhan, Rounik Mazumdar, Ashutosh Singh, Filomena Nogueira, Karl Kuchler, Anuradha Chowdhary, Neeraj Chauhan
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/9895c8d7992a4d8dab734dccd07fb996
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9895c8d7992a4d8dab734dccd07fb996
record_format dspace
spelling oai:doaj.org-article:9895c8d7992a4d8dab734dccd07fb9962021-11-15T15:30:58ZThe Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>10.1128/mSphere.00973-202379-5042https://doaj.org/article/9895c8d7992a4d8dab734dccd07fb9962020-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00973-20https://doaj.org/toc/2379-5042ABSTRACT Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs. IMPORTANCE Candida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.Raju ShivarathriSabrina JenullAnton StoiberManju ChauhanRounik MazumdarAshutosh SinghFilomena NogueiraKarl KuchlerAnuradha ChowdharyNeeraj ChauhanAmerican Society for MicrobiologyarticleCandida aurisSSK1HOG1multidrug resistancecell wallMAPK signalingMicrobiologyQR1-502ENmSphere, Vol 5, Iss 5 (2020)
institution DOAJ
collection DOAJ
language EN
topic Candida auris
SSK1
HOG1
multidrug resistance
cell wall
MAPK signaling
Microbiology
QR1-502
spellingShingle Candida auris
SSK1
HOG1
multidrug resistance
cell wall
MAPK signaling
Microbiology
QR1-502
Raju Shivarathri
Sabrina Jenull
Anton Stoiber
Manju Chauhan
Rounik Mazumdar
Ashutosh Singh
Filomena Nogueira
Karl Kuchler
Anuradha Chowdhary
Neeraj Chauhan
The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>
description ABSTRACT Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs. IMPORTANCE Candida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.
format article
author Raju Shivarathri
Sabrina Jenull
Anton Stoiber
Manju Chauhan
Rounik Mazumdar
Ashutosh Singh
Filomena Nogueira
Karl Kuchler
Anuradha Chowdhary
Neeraj Chauhan
author_facet Raju Shivarathri
Sabrina Jenull
Anton Stoiber
Manju Chauhan
Rounik Mazumdar
Ashutosh Singh
Filomena Nogueira
Karl Kuchler
Anuradha Chowdhary
Neeraj Chauhan
author_sort Raju Shivarathri
title The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>
title_short The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>
title_full The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>
title_fullStr The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>
title_full_unstemmed The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of <named-content content-type="genus-species">Candida auris</named-content>
title_sort two-component response regulator ssk1 and the mitogen-activated protein kinase hog1 control antifungal drug resistance and cell wall architecture of <named-content content-type="genus-species">candida auris</named-content>
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/9895c8d7992a4d8dab734dccd07fb996
work_keys_str_mv AT rajushivarathri thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT sabrinajenull thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT antonstoiber thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT manjuchauhan thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT rounikmazumdar thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT ashutoshsingh thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT filomenanogueira thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT karlkuchler thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT anuradhachowdhary thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT neerajchauhan thetwocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT rajushivarathri twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT sabrinajenull twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT antonstoiber twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT manjuchauhan twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT rounikmazumdar twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT ashutoshsingh twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT filomenanogueira twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT karlkuchler twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT anuradhachowdhary twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
AT neerajchauhan twocomponentresponseregulatorssk1andthemitogenactivatedproteinkinasehog1controlantifungaldrugresistanceandcellwallarchitectureofnamedcontentcontenttypegenusspeciescandidaaurisnamedcontent
_version_ 1718427901933649920