Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
Spin models appear in several fields of physics and beyond, but solving many of them is a task for which no general efficient classical algorithm is known to exist. Here the authors demonstrate how a variety of spin glass models can be implemented and solved, via quantum simulation, in a system of t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/98a3fda309784107b3d5ed8098a77d91 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:98a3fda309784107b3d5ed8098a77d91 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:98a3fda309784107b3d5ed8098a77d912021-12-02T15:34:32ZQuantum annealing for the number-partitioning problem using a tunable spin glass of ions10.1038/ncomms115242041-1723https://doaj.org/article/98a3fda309784107b3d5ed8098a77d912016-05-01T00:00:00Zhttps://doi.org/10.1038/ncomms11524https://doaj.org/toc/2041-1723Spin models appear in several fields of physics and beyond, but solving many of them is a task for which no general efficient classical algorithm is known to exist. Here the authors demonstrate how a variety of spin glass models can be implemented and solved, via quantum simulation, in a system of trapped ions.Tobias GraßDavid RaventósBruno Juliá-DíazChristian GogolinMaciej LewensteinNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-9 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tobias Graß David Raventós Bruno Juliá-Díaz Christian Gogolin Maciej Lewenstein Quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
description |
Spin models appear in several fields of physics and beyond, but solving many of them is a task for which no general efficient classical algorithm is known to exist. Here the authors demonstrate how a variety of spin glass models can be implemented and solved, via quantum simulation, in a system of trapped ions. |
format |
article |
author |
Tobias Graß David Raventós Bruno Juliá-Díaz Christian Gogolin Maciej Lewenstein |
author_facet |
Tobias Graß David Raventós Bruno Juliá-Díaz Christian Gogolin Maciej Lewenstein |
author_sort |
Tobias Graß |
title |
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
title_short |
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
title_full |
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
title_fullStr |
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
title_full_unstemmed |
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
title_sort |
quantum annealing for the number-partitioning problem using a tunable spin glass of ions |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/98a3fda309784107b3d5ed8098a77d91 |
work_keys_str_mv |
AT tobiasgraß quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions AT davidraventos quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions AT brunojuliadiaz quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions AT christiangogolin quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions AT maciejlewenstein quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions |
_version_ |
1718386794972577792 |