Quantum annealing for the number-partitioning problem using a tunable spin glass of ions

Spin models appear in several fields of physics and beyond, but solving many of them is a task for which no general efficient classical algorithm is known to exist. Here the authors demonstrate how a variety of spin glass models can be implemented and solved, via quantum simulation, in a system of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tobias Graß, David Raventós, Bruno Juliá-Díaz, Christian Gogolin, Maciej Lewenstein
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/98a3fda309784107b3d5ed8098a77d91
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:98a3fda309784107b3d5ed8098a77d91
record_format dspace
spelling oai:doaj.org-article:98a3fda309784107b3d5ed8098a77d912021-12-02T15:34:32ZQuantum annealing for the number-partitioning problem using a tunable spin glass of ions10.1038/ncomms115242041-1723https://doaj.org/article/98a3fda309784107b3d5ed8098a77d912016-05-01T00:00:00Zhttps://doi.org/10.1038/ncomms11524https://doaj.org/toc/2041-1723Spin models appear in several fields of physics and beyond, but solving many of them is a task for which no general efficient classical algorithm is known to exist. Here the authors demonstrate how a variety of spin glass models can be implemented and solved, via quantum simulation, in a system of trapped ions.Tobias GraßDavid RaventósBruno Juliá-DíazChristian GogolinMaciej LewensteinNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-9 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tobias Graß
David Raventós
Bruno Juliá-Díaz
Christian Gogolin
Maciej Lewenstein
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
description Spin models appear in several fields of physics and beyond, but solving many of them is a task for which no general efficient classical algorithm is known to exist. Here the authors demonstrate how a variety of spin glass models can be implemented and solved, via quantum simulation, in a system of trapped ions.
format article
author Tobias Graß
David Raventós
Bruno Juliá-Díaz
Christian Gogolin
Maciej Lewenstein
author_facet Tobias Graß
David Raventós
Bruno Juliá-Díaz
Christian Gogolin
Maciej Lewenstein
author_sort Tobias Graß
title Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
title_short Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
title_full Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
title_fullStr Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
title_full_unstemmed Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
title_sort quantum annealing for the number-partitioning problem using a tunable spin glass of ions
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/98a3fda309784107b3d5ed8098a77d91
work_keys_str_mv AT tobiasgraß quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions
AT davidraventos quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions
AT brunojuliadiaz quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions
AT christiangogolin quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions
AT maciejlewenstein quantumannealingforthenumberpartitioningproblemusingatunablespinglassofions
_version_ 1718386794972577792