Identifying acute exacerbations of chronic obstructive pulmonary disease using patient-reported symptoms and cough feature analysis
Abstract Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are commonly encountered in the primary care setting, though the accurate and timely diagnosis is problematic. Using technology like that employed in speech recognition technology, we developed a smartphone-based algorith...
Guardado en:
Autores principales: | Scott Claxton, Paul Porter, Joanna Brisbane, Natasha Bear, Javan Wood, Vesa Peltonen, Phillip Della, Claire Smith, Udantha Abeyratne |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/98a599c7ae8948ad9536e72f01b18131 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bias and privacy in AI's cough-based COVID-19 recognition
por: Humberto Perez-Espinosa, et al.
Publicado: (2021) -
Questionnaire Survey-Based Quantitative Assessment of the Impact of Transitional Care on Self-Management of Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease
por: Wenjie Xu, et al.
Publicado: (2021) -
Bias and privacy in AI's cough-based COVID-19 recognition – Authors' reply
por: Harry Coppock, et al.
Publicado: (2021) -
Estimating the efficacy of symptom-based screening for COVID-19
por: Alison Callahan, et al.
Publicado: (2020) -
Author Correction: A randomised controlled feasibility trial of E-health application supported care vs usual care after exacerbation of COPD: the RESCUE trial
por: Mal North, et al.
Publicado: (2020)