On a power-type coupled system with mean curvature operator in Minkowski space

Abstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhiqian He, Yanzhong Zhao, Liangying Miao
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/98a5f53631bd4b9e8eaa9e8004cb510e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:98a5f53631bd4b9e8eaa9e8004cb510e
record_format dspace
spelling oai:doaj.org-article:98a5f53631bd4b9e8eaa9e8004cb510e2021-11-21T12:07:16ZOn a power-type coupled system with mean curvature operator in Minkowski space10.1186/s13661-021-01572-z1687-2770https://doaj.org/article/98a5f53631bd4b9e8eaa9e8004cb510e2021-11-01T00:00:00Zhttps://doi.org/10.1186/s13661-021-01572-zhttps://doaj.org/toc/1687-2770Abstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{in } B, \\ u|_{\partial B}=v|_{\partial B}=0, \end{cases} $$ where M ( w ) = div ( ∇ w 1 − | ∇ w | 2 ) $\mathcal{M}(w)=\operatorname{div} ( \frac{\nabla w}{\sqrt{1-|\nabla w|^{2}}} )$ and B is a unit ball in R N ( N ≥ 2 ) $\mathbb{R}^{N} (N\geq 2)$ . We use the index theory of fixed points for completely continuous operators to obtain the existence, nonexistence and uniqueness results of positive radial solutions under some corresponding assumptions on α, β.Zhiqian HeYanzhong ZhaoLiangying MiaoSpringerOpenarticleMinkowski curvature operatorSystemPositive radial solutionUniquenessAnalysisQA299.6-433ENBoundary Value Problems, Vol 2021, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Minkowski curvature operator
System
Positive radial solution
Uniqueness
Analysis
QA299.6-433
spellingShingle Minkowski curvature operator
System
Positive radial solution
Uniqueness
Analysis
QA299.6-433
Zhiqian He
Yanzhong Zhao
Liangying Miao
On a power-type coupled system with mean curvature operator in Minkowski space
description Abstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{in } B, \\ u|_{\partial B}=v|_{\partial B}=0, \end{cases} $$ where M ( w ) = div ( ∇ w 1 − | ∇ w | 2 ) $\mathcal{M}(w)=\operatorname{div} ( \frac{\nabla w}{\sqrt{1-|\nabla w|^{2}}} )$ and B is a unit ball in R N ( N ≥ 2 ) $\mathbb{R}^{N} (N\geq 2)$ . We use the index theory of fixed points for completely continuous operators to obtain the existence, nonexistence and uniqueness results of positive radial solutions under some corresponding assumptions on α, β.
format article
author Zhiqian He
Yanzhong Zhao
Liangying Miao
author_facet Zhiqian He
Yanzhong Zhao
Liangying Miao
author_sort Zhiqian He
title On a power-type coupled system with mean curvature operator in Minkowski space
title_short On a power-type coupled system with mean curvature operator in Minkowski space
title_full On a power-type coupled system with mean curvature operator in Minkowski space
title_fullStr On a power-type coupled system with mean curvature operator in Minkowski space
title_full_unstemmed On a power-type coupled system with mean curvature operator in Minkowski space
title_sort on a power-type coupled system with mean curvature operator in minkowski space
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/98a5f53631bd4b9e8eaa9e8004cb510e
work_keys_str_mv AT zhiqianhe onapowertypecoupledsystemwithmeancurvatureoperatorinminkowskispace
AT yanzhongzhao onapowertypecoupledsystemwithmeancurvatureoperatorinminkowskispace
AT liangyingmiao onapowertypecoupledsystemwithmeancurvatureoperatorinminkowskispace
_version_ 1718419201218052096