Survival analysis in breast cancer using proteomic data from four independent datasets
Abstract Breast cancer clinical treatment selection is based on the immunohistochemical determination of four protein biomarkers: ESR1, PGR, HER2, and MKI67. Our aim was to correlate immunohistochemical results to proteome-level technologies in measuring the expression of these markers. We also aime...
Guardado en:
Autores principales: | Ágnes Ősz, András Lánczky, Balázs Győrffy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/98b06f65bfd74ceea979747b3df6d25b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer.
por: Balázs Győrffy, et al.
Publicado: (2013) -
Pancancer survival analysis of cancer hallmark genes
por: Ádám Nagy, et al.
Publicado: (2021) -
Enhanced differential expression statistics for data-independent acquisition proteomics
por: Tomi Suomi, et al.
Publicado: (2017) -
Dynamic Urinary Proteome Changes in Ovalbumin-Induced Asthma Mouse Model Using Data-Independent Acquisition Proteomics
por: Qin W, et al.
Publicado: (2021) -
3p Arm Loss and Survival in Head and Neck Cancer: An Analysis of TCGA Dataset
por: Hugh Andrew Jinwook Kim, et al.
Publicado: (2021)