Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore

Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct transloc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Evgeniya Trofimenko, Gianvito Grasso, Mathieu Heulot, Nadja Chevalier, Marco A Deriu, Gilles Dubuis, Yoan Arribat, Marc Serulla, Sebastien Michel, Gil Vantomme, Florine Ory, Linh Chi Dam, Julien Puyal, Francesca Amati, Anita Lüthi, Andrea Danani, Christian Widmann
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
TAT
R
Q
Acceso en línea:https://doaj.org/article/98b234728cca409a8a4e7ab3072baed6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:98b234728cca409a8a4e7ab3072baed6
record_format dspace
spelling oai:doaj.org-article:98b234728cca409a8a4e7ab3072baed62021-12-02T16:24:18ZGenetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore10.7554/eLife.698322050-084Xe69832https://doaj.org/article/98b234728cca409a8a4e7ab3072baed62021-10-01T00:00:00Zhttps://elifesciences.org/articles/69832https://doaj.org/toc/2050-084XCell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.Evgeniya TrofimenkoGianvito GrassoMathieu HeulotNadja ChevalierMarco A DeriuGilles DubuisYoan ArribatMarc SerullaSebastien MichelGil VantommeFlorine OryLinh Chi DamJulien PuyalFrancesca AmatiAnita LüthiAndrea DananiChristian WidmanneLife Sciences Publications Ltdarticlecell-penetrating peptideswater porespotassium channelsmembrane potentialTATIn silico modelingMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic cell-penetrating peptides
water pores
potassium channels
membrane potential
TAT
In silico modeling
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle cell-penetrating peptides
water pores
potassium channels
membrane potential
TAT
In silico modeling
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Evgeniya Trofimenko
Gianvito Grasso
Mathieu Heulot
Nadja Chevalier
Marco A Deriu
Gilles Dubuis
Yoan Arribat
Marc Serulla
Sebastien Michel
Gil Vantomme
Florine Ory
Linh Chi Dam
Julien Puyal
Francesca Amati
Anita Lüthi
Andrea Danani
Christian Widmann
Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
description Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.
format article
author Evgeniya Trofimenko
Gianvito Grasso
Mathieu Heulot
Nadja Chevalier
Marco A Deriu
Gilles Dubuis
Yoan Arribat
Marc Serulla
Sebastien Michel
Gil Vantomme
Florine Ory
Linh Chi Dam
Julien Puyal
Francesca Amati
Anita Lüthi
Andrea Danani
Christian Widmann
author_facet Evgeniya Trofimenko
Gianvito Grasso
Mathieu Heulot
Nadja Chevalier
Marco A Deriu
Gilles Dubuis
Yoan Arribat
Marc Serulla
Sebastien Michel
Gil Vantomme
Florine Ory
Linh Chi Dam
Julien Puyal
Francesca Amati
Anita Lüthi
Andrea Danani
Christian Widmann
author_sort Evgeniya Trofimenko
title Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_short Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_full Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_fullStr Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_full_unstemmed Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
title_sort genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/98b234728cca409a8a4e7ab3072baed6
work_keys_str_mv AT evgeniyatrofimenko geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT gianvitograsso geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT mathieuheulot geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT nadjachevalier geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT marcoaderiu geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT gillesdubuis geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT yoanarribat geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT marcserulla geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT sebastienmichel geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT gilvantomme geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT florineory geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT linhchidam geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT julienpuyal geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT francescaamati geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT anitaluthi geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT andreadanani geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
AT christianwidmann geneticcellularandstructuralcharacterizationofthemembranepotentialdependentcellpenetratingpeptidetranslocationpore
_version_ 1718384124483338240