Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI
The purpose of this study was to explore whether the Nomogram, which was constructed by combining the Deep learning and Radiomic features of T2-weighted MR images with Clinical factors (NDRC), could accurately predict placenta invasion. This retrospective study included 72 pregnant women with pathol...
Enregistré dans:
Auteurs principaux: | Qian ShaoYutao Wang, Rongrong Xuan, Yutao Wang, Jian Xu, Menglin Ouyang, Caoqian Yin, Wei Jin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/98c2693fab7e4ddfbe8258cdec4b176d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas
par: Yutao Wang, et autres
Publié: (2021) -
MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
par: Yang Li, et autres
Publié: (2021) -
Radiomics Analysis of Contrast-Enhanced CT for the Preoperative Prediction of Microvascular Invasion in Mass-Forming Intrahepatic Cholangiocarcinoma
par: Fei Xiang, et autres
Publié: (2021) -
The Value of Model Based on Radiomics Features of T2-weighted Imaging and Clinical Feature in Diagnosing the Depth of Stromal Invasion of Cervical Squamous Cell Carcinoma
par: REN Jing, et autres
Publié: (2021) -
Comparing the Performance of Two Radiomic Models to Predict Progression and Progression Speed of White Matter Hyperintensities
par: Yuan Shao, et autres
Publié: (2021)