How to Use Machine Learning to Improve the Discrimination between Signal and Background at Particle Colliders
The popularity of Machine Learning (ML) has been increasing in recent decades in almost every area, with the commercial and scientific fields being the most notorious ones. In particle physics, ML has been proven a useful resource to make the most of projects such as the Large Hadron Collider (LHC)....
Enregistré dans:
Auteurs principaux: | Xabier Cid Vidal, Lorena Dieste Maroñas, Álvaro Dosil Suárez |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/98c59779bc1448c9890aad3e86c9de61 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Advances in Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider
par: Anna Stakia, et autres
Publié: (2021) -
A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS Calorimeter system: detector concept, description and R&D and beam test results
par: Imam H.
Publié: (2021) -
Exploration of Extended Higgs Sectors with Run-2 Proton–Proton Collision Data at the LHC
par: Arnaud Ferrari, et autres
Publié: (2021) -
Neutron spin structure from e-3He scattering with double spectator tagging at the electron-ion collider
par: I. Friščić, et autres
Publié: (2021) -
Contextual Advantage for State Discrimination
par: David Schmid, et autres
Publié: (2018)