Approximate nonradial solutions for the Lane-Emden problem in the ball
In this paper we provide a numerical approximation of bifurcation branches from nodal radial solutions of the Lane Emden Dirichlet problem in the unit ball in ℝ2, as the exponent of the nonlinearity varies. We consider solutions with two or three nodal regions. In the first case our numerical result...
Guardado en:
Autores principales: | Fazekas Borbála, Pacella Filomena, Plum Michael |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/98dbbb81b61b46b0841fbb04ff98585d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bifurcation analysis for a modified quasilinear equation with negative exponent
por: Chen Siyu, et al.
Publicado: (2021) -
Lane-Emden equations perturbed by nonhomogeneous potential in the super critical case
por: Ma Yong, et al.
Publicado: (2021) -
A variant of Clark’s theorem and its applications for nonsmooth functionals without the global symmetric condition
por: Huang Chen
Publicado: (2021) -
New asymptotically quadratic conditions for Hamiltonian elliptic systems
por: Liao Fangfang, et al.
Publicado: (2021) -
Existence and concentration of positive solutions for a critical p&q equation
por: Costa Gustavo S., et al.
Publicado: (2021)